总结不仅仅是总结成绩,更重要的是为了研究经验,发现做好工作的规律,也可以找出工作失误的教训。这些经验教训是非常宝贵的,对工作有很好的借鉴与指导作用,在今后工作中可以改进提高,趋利避害,避免失误。总结书写有哪些要求呢?我们怎样才能写好一篇总结呢?那么下面我就给大家讲一讲总结怎么写才比较好,我们一起来看一看吧。
(资料图片仅供参考)
在过去的一年里,我在领导、同事们的支持和帮助下,用自己所学知识,在自己的工作岗位上,尽职尽责,较好的完成了各项工作任务。为公司做出了应有的贡献。同时,身为一名化验员我也在从思想到行动,从理论到实践,进一步学习,提高自己的工作水平。现将本人本年度工作总结如下:
随着公司的发展,实验室仪器的增加。为了更好的完成工作,在之前的工作基础之上,又学习了水中油含量、柴油烃类组成(稀释法)、hcl的测定等新的实验方法,并且熟练掌握,较好的完成了相关的工作任务。其次在工作中也经常遇到一些新的问题,通过和领导、同事们的商讨研究最终解决。同时也对相关工作有了进一步的认识。
我的工作主要是配合研发一部的其它几个岗位做相应的分析。第一,配合重整催化剂评定岗位生成油的折光率和烃类组成分析;第二,配合抽提组的芳烃抽提的柴油做烃类组成分析;第三,配合代研究做的裂解油的黏度,酸值及色度等分析;第四,负责研发一部水样的水中油含量、水垢等相关分析;另外在原油评价中负责酸值、蜡含量、硫醇硫、色度、冷虑点、黏度及逆流黏度等相关分析;参加hr-05b300溶剂生产负责取样及黏度分析共二十一天;其次就是一些储存油样的色度分析及其它的一些实验分析;另外我还积极配合其他同事完成了一些工作任务。一年中,在领导和同事们的悉心关怀和指导下:我共完成色度数据500多个;折光率数据150个;黏度数据88个;逆流黏度数据140个;水中油数据245个;荧光族组数据193个;柴油族组成数据115个;酸值数据30多个;蜡含量数据11个;密度数据16个;冷虑点数据5个;溴价溴指数数据18个。化验工作精细琐碎,而且由于我们主要是搞研发,所以不像炼油厂的化验工作很有规律性。我们会经常遇到不同的新问题。所以为了搞好工作,我不怕麻烦,细心观察实验现象,向领导请教、向同事学习、自己摸索实践,认真学习相关业务知识,不断提高自己的理论水平和综合素质。在实验室工作安全意识和环保意识相当重要。
所以我工作投入,能够正确认真对待每一项工作,熟记各项安全措施,遇事不能慌。环保也是相当重要,做到每种化学试剂和需要处理的油样,集中分类处理,不随意乱倒。这些对环境都很有影响。在刷洗瓶子时,不随便倒沾有油的污水。同时注意到实验室的通风和各种化学试剂及油样的摆放问题。
我热爱自己的本职工作,正确认真对待每一项工作,在开展工作之前做好个人,有主次的先后及时完成各项工作。热心为大家服务,认真遵守劳动纪律,保证按时出勤。有效利用工作时间,坚守岗位,需要加班完成工作按时加班加点,保证工作能按时完成。在作风上,能遵章守纪、团结同事、务真求实、乐观上进,始终保持严谨认真的工作态度和一丝不苟的工作作风。积极参加公司组织的各项活动,如春游,秋季五项全能体育比赛等。
总结这一年来的工作,尽管有了一定的进步和成绩,但在一些方面还存在着不足。比如很多实验只是停留在简单的操作而忽视了工作原理;实验过程中由于自己的粗心导致实验仪器损坏或实验结果误差较大等。还有个别实验做得不够熟练,不够完善,这有待于在今后的工作中加以改进。通过这段时间的工作实践,让我懂得从事实验分析工作一定要细心,不能放过一个疑点,有问题多请示,多汇报。在今后的时间里,我将认真遵守各项考勤制度,努力学习有关石油化工的各项实验分析方法及石油化工知识,争取成为一名更为优秀的全方面的实验分析化验员,为公司的发展献出自己的一份力量。
我20xx年7月参加工作,在承德县经委成为一名文字录入员,历经几次机构改革,原来单位改为现在的承德县工业促进局,而我一直从事打字复印工作。四年年暑往寒来,办公设备不断更新,自己作为一名录入员,亲身感受了时代的发展与进步,也感受了工作的压力,计算机的升级换代,跟随的是操作技能的更新与提高。我也随着工作的需要不断提升自己的业务能力和水平,学习新的业务知识,在繁忙的工作中体验了艰辛,也收获了进步与成长的快乐。下面是我的录入员工作总结:
在工作中我尊敬领导,与同事关系融洽。为尽快进入工作角色,本人自觉认真学习本单位、本岗位的各项制度、规章,严格按照单位制定的工作制度开展工作。能够坚持学习政治理论、与录入员工作相关的业务知识。积极参加单位组织的各项学习活动,并利用业余时间进行自学。业务水平和理论素养都有所提高。
多年来,在单位领导和同志们的大力支持和帮助下,本人端正工作态度,严格履行工作责任,较好地完成了本职工作任务,所承担的工作深得领导和同志们的肯定和好评。再此首先感谢一下一直以来对我耐心帮助和关心的所有同事和领导!下面是我个人这些年的工作业绩和技术业务方面的总结。
回顾这些年来的工作,我克服自己文化基础差的弱点,利用业余时间,认真钻研业务和提高自身的政治素质。积极参加市、县劳动部门组织的各种业务知识能力培训,加强职业道德修养,努力提高自身工作能力。认真学习计算机的使用、维修和保养知识。自己不懂,就虚心向他人学习,自己花钱参加计算机知识培训班,把学到的知识应用在工作实践中。文字录入要求的是准确和速度。五笔输入法是录入汉字最快的输入法之一,因此我利用自己的休息时间努力学习,记字根、练指法、并做到盲打,有时甚至练习到深夜,直到打字基本熟练,速度达到每分钟100字以上为止。
进单位以来,在业务主管和同事们的支持和帮助下,本人很快就掌握和熟悉本岗位工作的要求及技巧,严格做到按时按量完成单位里交给的材料和文件的录入、校对、复印等工作,保证打印材料准确、整洁、清晰,符合材料的规格。在文字排版上尽量设计的美观些,努力做到让打印出来的文件或资料便于大家使用。
在文字录入的同时,能认真执行保密制度,文字材料的底稿能妥善保管,印后能及时把作废的底稿销毁,不泄露保密材料及文件的内容。对校对过的废、旧材料和文件的纸张,也都能够妥善处理。
为了明确文印室里的办公耗材使用情况,我们制作了文印登记簿,对打英复印或油印超出材料,都要如实登记,真正做到厉行节约,杜绝浪费。对于文印室里的、打印机、复印机等设备和其它物品,能够严格管理好,保证文印工作顺利进行,并在工作中学会这些设备的简单维修与保养。为此我读了这方面的大量书籍,自己买书,到书店看书,上网查阅资料更是常有的事,在书本中我丰富了自己,工作能力有了明显的提高。
总结:录入员工作简单没多少技术含量但是这个工作需要责任心和细心,要有一定的处事能力处事要豁达,不要求全责备,斤斤计较,对于工作中存在的问题和矛盾,需要以宽容之心去协调,去处理。但是在处理矛盾时,一定要相互谅解,支持,处事须谨慎,不要随心所欲,我行我素。粗心大意,不是谨小慎微,而是严谨慎行,待人要真诚,不能欺上瞒下,互不信任。诚信是中华民族的传统美德,也是我处人处事的基本原则。
在市委、市政的领导和关心下,在自治区农普办的业务指导下,经过市农普办和县区农普办全体人员的通力合作,我市第二次农业普查数据处理工作接近尾声。现将全市农业普查数据处理工作总结如下:
我市共有1602个普查区、17010个普查小区,涉农单位1960家,需要录入的普查表有200多万张。我市农普数据处理工作全部安排在市一级开展,分为光电录入和Apras逻辑审核两个阶段,两个阶段同时进行。市农普办调配二十多台电脑,加上自治区调拨的12台电脑,约有30多台PC机用于农普数据处理工作。
整个普查数据处理工作从准备阶段到数据上报,历时一年半时间,经历了数据处理组组建阶段、清查处理阶段、设备安装调试阶段、培训阶段、光电录入阶段、逻辑审核阶段、数据上报阶段等。我市光电录入工作开始于2007年4月上旬,采取外聘实习生和市农普办工作人员相结合操作的方式,由实习生进行扫描、校验、审核整个流程的操作,农普办人员在旁监督以保证扫描录入的质量。全面的光电录入工作于6月12日结束,期间共扫描普查表2300579张,平均每天扫描3万张左右,最高一天扫描约7万张的普查表。Apras逻辑审核开始于4月中旬,采取的方法是由乡镇人员操作对本乡镇的数据进行逻辑审核、改错,市农普办业务组人员控制总体数据质量。为确保数据质量,市农普办多次召开现场培训会,通过制定、执行完整的工作流程,从而对Apras审核进行全程监控。市农普办先后组织了20批约400人次参加了农普Apras逻辑审核工作,整个审核工作于7月下旬结束。市农普办还结合我市的实际,发挥创新能力,在国家下发的Apras程序制度基础上,新增了19条审核公式和10张汇总表用于数据质量控制。8月下旬,我市农普数据顺利通过自治区审核并上报至国家。
(一)领导重视,为数据处理工作提供强有力的组织保障。
数据处理作为整个农普工作的重要环节,关系到农普工作的好坏,我市农普数据处理工作之所以顺利开展,与市农普办领导密切关心分不开的。农普办领导经常对数据处理工作进行检查指导,及时纠正数据处理工作错误,协调解决数据处理工作遇到的困难。
市农普办领导从普查经费中划拨出数据处理专项经费,用于保障数据处理培训、外聘数据处理人员劳务费、购买数据处理用服务器和PC机等电子设备、网站建设和网络正常运行以及平时日常办公所需要的支出,保障了农普数据处理工作的顺利进行。
(二)精心准备,成立农普数据处理组,制定本市普查数据处理实施。
根据南农普办字11号文《南宁市第二次全国农业普查领导小组办公室成员职责分工方案》的要求,在市农业普查领导小组办公室专门设立数据处理组,并以文件形式明确了数据处理组的工作职责,处理组成员由市统计局计算站业务骨干组成。
根据国家和自治区的普查数据处理实施方案要求,结合南宁市的实际情况,我们制定了农普数据处理实施方案。方案明确规定了整个农普数据处理工作流程、处理模式,建立了数据处理工作岗位责任制,确保了系统管理、扫描、识别、校验、审核、任务管理、数据管理岗位责任到人。市农普办还制定了一些数据处理工作规定,如计算机房管理规定、机房日常工作管理要求等。
(三)密切配合,做好农普清查数据处理工作,为普查正式开展夯实基础。市农普数据处理组积极配合业务组开展农普清查摸底工作,协助业务组完成清查快速汇总工作。
(四)认真筹备,做好数据处理环境的落实、数据处理系统的集成和设备补充工作。
市农普办及时落实了数据处理工作的场地,并对数据场地按要求进行了改造,保证独立接地并且小于1欧姆。购置了17台PC机,在机房安装了一台格力5P天井式空调,给机房配备了打印机,调配5台电脑和2台服务器用于Apras逻辑审核工作,并更新了机房的两台UPS。
及时接收自治区下发的数据处理软、硬件,及时组织数据处理组人员组装设备、安装程序、调试网络、测试系统集成,搭建了与外部隔绝的农普数据处理专用网络,保障了数据处理按时开展。同时,落实了资料周转、调阅和管理的资料库用房。
(五)精心挑选,做好数据处理人员选调和培训工作。
根据农普工作要求,市农普办从各成员单位抽调了一批年纪轻、学历高、业务精的同志充实到农普数据处理工作中来,在数据处理工作各环节担当监督员、审核员等重要角色。并从南宁市有关院校挑选出39名学生参加光电录入和Apras逻辑审核工作。
市农普办多次派出业务骨干参加国家、自治区举办的各种数据处理工作的培训会,结合本市实际制定了详细的培训计划,对我市参加数据处理工作的县区及外聘的人员进行数据处理技术的培训。培训取得良好效果,受训人员熟练理解培训内容和掌握了相应的操作技巧,极大促进了我市农普数据处理工作顺利开展。
(六)合理安排,做好各县区普查表上交及数据处理工作中原始资料的登记交接工作。
制定原始资料交接流程,制作了交接登记表,规定各县区上交普查表的时间,指定专人负责资料的交接工作,原始资料有专门地点存放,专人进行管理,已录入和未录入的资料分开存放,避免了在资料管理上出现混乱。
在光电录入和逻辑审核过程中,每个环节普查表的流转均有详细的记录。特别是在光电录入环节中,有专人领取普查表并由专人负责回收领取的普查表,对于已扫描、已校对、已审核的普查表均有明显标识。
(七)精心组织,做好普查表光电录入和逻辑审核工作。
在自治区下发的12台PC机的基础上,我市又购置一批PC机用于光电录入工作。制定了规范的录入工作流程,领表、扫描、校验、审核、收表等环节均定人定岗,专人负责,市级和县级排出专业人员负责跟班答疑。参与录入工作的人员实行两班倒,每班设有一个由市农普办人员担任的班长负责对光电录入的全面调配。每班交接有详细的交接单,记录清楚前一班未完成的工作、已领出报表的小区名。
数据处理组负责把光电扫描的数据从光电录入系统导出,再导入到Apras逻辑审核中,并进行审核,记录好审核出来的错误笔数。当光电录入导出时遇到错误,数据处理组人员将错误清单打出,交由光电录入当班班长处理。
Apras逻辑审核由乡镇人员操作完成,乡镇人员负责审核、修订本乡镇的农普数据。市农普办统一协调,安排各个乡镇进行数据处理的时间,业务组和数据处理组人员实时监控,当发现问题、错误,及时告知相关乡镇的人员。为进一步控制好我市的数据质量,市农普办结合我市的实情,发挥创新能力,在国家下发的Apras程序制度基础上,新增了19条审核公式和10张汇总表。光电录入工作基本结束后,原先参与光电录入的人员立即转入到Apras逻辑审核的工作。
(八)严格执行,做好农普图像、数据的备份和处理设备的维护工作。
数据处理组对光电录入系统进行刻盘备份,定期对光电扫描的图像和Apras逻辑审核的数据进行备份,图像可以通过程序定时自动备份,Apras中的数据通过人工定时备份。接入农普数据处理专用网络的每台电脑上均装有国家下发的VRV北信源杀毒软件,并对其设置了定时自动查杀病毒。由于措施得当,整个数据处理工作中未出现因操作不当或不及时备份或未及时查杀病毒而造成数据和图像丢失现象。
每天工作结束时,均要求扫描仪操作人员对扫描仪进行清洁。数据处理组每个月定期对扫描仪进行深度清洁。当扫描仪出现故障超出能力范围时,数据处理组均能及时与赞华公司联系,请技术人员上门维护处理故障。其他设备在农普数据处理工作期间未出现任何故障。
及时对光电录入系统和逻辑审核系统进行升级。一旦国家农普网或自治区下文件更新,市农普办数据处理组均能及时对市级相关程序按要求进行更新(包含Apras制度更新),避免出现更新不及时而耽误整个数据处理进程的事件。
(九)服从调配,积极配合全区农普数据处理工作的开展。
根据自治区的要求,在光电录入期间,我市先后支援了贵港市和北海市各一台光电扫描仪,支援贵港市四台PC机,有力支持了兄弟市的数据处理工作。在数据上报后,及时返还了自治区下发的所有扫描仪、PC机、服务器等数据处理设备。
(十)按时保质,做好普查数据质量检查、评估和上报工作。
市农普办安排有专人负责统计每天的光电录入进度,并按照要求及时向自治区上报光电录入进度。
严格按照规定的内容、时间和方式向自治区农普办上报我市农普数据和扫描图像。在上报数据之前,数据经市农普办业务组进行了分析和评估,符合要求的评估报告及有关文字随同普查数据一并上报自治区。
对于自治区审核反馈的数据和错误清单,及时组织人员进行核实、修订,及时按规定再次上报数据。
(十一)密切配合,做好普查数据事后质量抽查工作。
数据上报后,根据自治区农普办的安排,我市派出业务组组长和数据处理业务骨干参加了普查数据事后质量的抽查工作。在整个抽查工作中,我市按照自治区农普办的要求,严格把关,认真完成抽查工作的每一个步骤。我市农普数据处理工作质量得到了较大提升。
下一步数据处理工作的重心将转移到数据资料的开发上。我们计划在自治区反馈数据后,立即组织人员对全市农普资料进行系统整理,及早开展本市的农业普查资料汇编的编辑工作,完成县区一级的汇总并向其反馈相关数据和资料,努力搞好农业普查数据库的建设工作。
对于数据录入这项工作,在接触之前,我所想象的是每天处理一些实时变化的数据、和数字打交道,然后把它们系统的导入到一个平台上以供后期分析使用,这么一个过程。然而接手它之后,我才发现原来这里所谓的“数据”并非普通意义的“数据”,而是包括光路中所涉及的各项参数指标的总体。即日常意义的数据偏向于数字,而这里的数据指的是参数。
关于南方电网的这个资源管理系统,它就如同一个检索库,里面承载了南网、省网、传输网、综合数据网等的全部业务信息。而我们的数据录入工作就是,为这个检索库引入实时而全面的网络信息,使之与所有的网络实体一一同步对应,以便系统的管理和审查调用之用。该系统较简洁明了,实用方便,但由于系统尚在更新,在实际操作中仍会出现一些小问题影响录入工作的完成。比如过来的第一天,局方的指示要求是说要把站点名称里的描述信息删除,改成在下面的功能类型里描述。而我在完成修改后,再返回查看时,却发现系统里的资料还是修改前的资料根本没变。
这时我心想,可能是我哪里操作不对或者偶然因素所致。于是又重新尝试连接了其他的站点,结果仍是如此。这时候,我再向负责人员汇报情况,确定是系统的问题导致无法录入。经过这件事情,我明白了,以后无论做任何工作,都要细心检查,否则白白花了时间和精力不说,再耽误项目进程的话就更严重了。类似这样的情况还有一些,比如站点搜索时页面不能准确的指示到该站点处等等。
这次回来刚好系统更新过了,不知道性能有没有提升,但速度却慢了一些。在这里的这段时间,录入部分刚好进行到物理连接这块,所以我接触最多的工作就是物理连接。记得来的第二天好像,我不知道什么是物理连接,看其他人在做就过去学习,然后记下操作步骤,自己再慢慢尝试。那时候也不知道连的两端究竟是什么,只是按部就班的走流程。连的次数多了后,才逐渐摸清了物理连接的真正意义。这里的物理连接就如同我们平时想找到一个地点,必须经过国家、省、市、县等等逐层切入,最后才能找到这个确定的地点。同样,物理连接要做的事情就是,经过找站点、找机房、找机架、找子框、找端子的过程对指定网元的某端子和站点的某对应端子进行关联,这个逐步深入的过程让我对设备的内部结构和光路的路由走势都有了整体的把握。在光路连接的过程中,每一条细微的信息都关乎整个结果的完善与否。其步骤我总结如下:
1、从逻辑光缆网中搜索站点,以确认其所在区域,暂且类比站点为“省”;
2、打开站点机房物理平面图,从而找到网元所在的机架,以此类推,机架属于“市”级;
3、通过光路序号的查询,确定机房里所需连接的端子信息,这就好比生活中的“县”;
4、通过查询通道名称规范,得到网元上连接的端子信息;
5、把以上所有信息录入到建立端子连接的框格里,下移保存即可,因此我们的工作就是要找到这么两个特定的“县城”,并把它们关联起来。另外,为了提高工作效率以及减少失误,我觉得最好按照从(1)、(2和4)、(3)的顺序填写信息;并且,一般情况下,待连接的端子标签都会显示的“已连接”,这时应该返回物理机房找到该端子,修改其端子信息后再完成连接工作。我不知道为什么系统默认所有未连接的端口的初始状态都是“已连接”,或许他们可以稍微改进一下,把所有端子的初始状态都更改过来,这样可以减少工作步骤,也可以避免返回修改后记错端子信息造成失误。一次次的操作过程也让我找到了其中的一些技巧,比如说在打开机房物理平面图时,可以直接从中确认出网元的机架号填上去:而网元的子框一般都是01子框,再对应物理连接资料里的通道名称规范,从中找出网元的端子信息,至此网元侧的信息录入已完成,这样整个录入的流程就会简洁规范很多。而另一边站点侧的端子信息查找更为简单,只需在光路查询的页面输入光路序号即可。
且物理连接的左右两边端子信息是平行对等的,可以分别对调。通过这些录入操作,我发现实践真的是经验和技巧的源泉,实践、总结、再实践,这样的循环过程很多时候比那些抽象概念的学习方式管用的多,它可以达到再多的理论认识、经验传输都达不到的效果。至于管理方面,由于分工协作以及资料的不统一,有时候可能会导致重复工作等问题。这让我明白了团队合作中知人善用和合理分工的重要性,而我们个人在团队合作过程中应该秉持一心向团队、共同赢胜利的信念,不能得过且过、拖延散漫,对于自己负责的部分要有强烈的责任心,以减少后期复查工作。
另外,可能因为多方参与的缘故,以致事情的复杂度有所提升:比如项目的进程时缓时急;出了问题责任不好分清;沟通起来也没那么容易等等,而局方所给规范的时刻变动,也是导致重复工作的一项重大原因。从4月19号到现在,局方都在统计数据,所以这段时间我们的工作只能是核对光路信息,而不能进行录入工作。我觉得我方人员一直处于听候差遣的状态,可以更加强化在合作三方中的地位,以期达到可以共同对话、相互磋商的目标,这样更容易就出现的问题和实时变更等及时达成一致,提高工作效率。
即将步入20xx年,新春的气息仿佛一缕春风溢满了我们数据部每角落,又一个年度在我们不知不觉的工作中悄悄溜走,只留下令我们无限的回想和遐思。
来以纯公司不知不觉已经有一年多了,我任职数据部一名数据统计员,每一项工作都与业务部有相连,跟进业务部日常行程、每天销售业绩、发生意销售、目标及占比跌幅店铺信息、物料赞助跟进等等就是我的工作。在婷姐的带领下和诸位同事的合作中学到很多东西,慢慢的全面把握了公司的数据准确性和保密性,这对我的职业生涯具有非凡意义,使我打下了坚实的基础。
回顾这一年多时间,工作经验、社会交流等等一切都是从头开始,从无到有,从有到会,从会到熟;这一过程都离不开公司领导的带领和个人的努力,这一年是感恩的一年,真心感谢公司给我提供磨练自己的机会,更感谢公司领导一直以来对我的信任与栽培!
渐渐的,我体会到和摸索出一些总结和感想:
总结:
做一份能令领导满意的数据表格不单单是自己一个人闭门造车所能造出来的,需要合理的意见和适当的帮助,自己的制表思路是要在前人的启发下才能发挥出色。
做数据表格是给人一种一目了然的清晰感,怎样把公司的数据信息及时传达公司领导、客户及客户主任尤为重要。准确的数据表格是给领导和客户的第一印象,是直接影响整份表格的进度。信息是及时、全面反映整个企业的精神面貌和工作动态,这就要求及时,迅速,对各部门上报的信息进行整理、加工,对发生的大事对各部门进行催报,使信息管理工作更加规范到位。
经验是在实际工作在中得到的,把握了经验工作自然就是事半功倍。刚开始做数据表格时,只知道一味的按部就班,缺少灵活性,表格表达不清晰。后来经过不断的摸索,领悟到表格有很多功能是值得我们去参谋的,运用VLOOKUP,SUMIF等常用公式,让自己变得灵活而具有战斗力。表达最美的效果,这种感觉是要在长期的工作经验中积累起来的。
做数据表格是在第一份原始资料的基础上做出来的,第一份原始资料就是小马做的数据报表,做数据时遇到什么不明白的需请教,因此信息传递是很重要的,我们要保持信息的畅通性就必须善于沟通,否则出现差错,前功尽弃。所以,一边工作一边总结经验是百利而无一害的。
数据的作用是给他人能够更快的看清楚所表达的数据内容,还有重要的是数据准确性及美观,给人一种赏心悦目,心旷神怡的舒服感,具有挑战性的是有一种感觉,就是一眼就分辨得出哪里好,哪里需要改进,哪里需要取
感想:
能把自己所学知识运用出来是一件值得庆幸的事,安分守己,把自己的工作出色完成对公司是一种责任,对自己是一种交代。
新的环境必然有新的事物,接收新的事物必然有新的认识,新的认识必然有新的数据理念思想,对自己的专业知识和认识更上一层楼。
20xx年是奋斗的一年,一年可以实现很多事情,可以改变很多事情,是选择继续奋斗还是碌碌无为,关键在于自己的行动。只有行动万事皆成事实,所以我给自己定下了三个目标:
1、全面提升自己,工作能独当一面。这样就能提高工作效率,不会延误工作进度。
2、数据能精确化,提高效率。
3、保持一颗上进心,永不熄灭。
最后,祝愿大家新春如意,事业有成,开开心心过一个好年。
在20xx年上半年,从总体来讲,日常的数据采集依然占据了很大的比重。在数据录入方面,我依然严格要求自己,在保证速度的同时做到准确录入。在上半年,我参与了第一季度数据报告以及5月份月报的撰写,虽然是常规数据报告,我依然不敢松懈,尽力做到一遍通过,不犯低级错误。
另外,在日常工作之余,也向周x学习了专刊考核方面的工作。考核工作对我来说并不陌生,因为以前曾经也接触过,考核规则简化之后,上手更加容易。主要是做到耐心细致就不会出错。
那么,本年度除日常工作外,应中心领导要求,每日由广告部渠道组提供当日未到达名单,由李x和我轮流在系统中查询最后一次投放本报的时间。广告部渠道组提供名单并不细致,加大了查询工作的难度,希望日后通过有效的交流和沟通,双方可以达成统一,提高工作效率。
人才招聘行业调研报告:年初,在报社领导的指示下,我和祁x共同完成了人才招聘行业的专项调研报告。本次报告通过对全国人才招聘行业的仔细研究,包括全国媒体人才招聘广告投放情况与沈阳地区媒体投放对比分析,沈阳地区自身招聘行业的特点以及报纸、网络、人才市场等多个方面的深入分析,在金融危机的影响下,对XX年招聘行业情况做出了有预见性的预测,并验证了领导的想法。通过撰写此次报告,使我的思路更加开阔,学到了很多东西,也掌握了一些撰写专项分析报告的技巧,对我日后撰写某个行业的专项报告有一定的帮助。在这里感谢主任对我和祁x的信任和指导。
4月份,在领导的指示下,我们与xx电器一起合作了一次关于家电行业的调研活动。本次调研方式为街头拦访。关于问卷,个人认为,由于街头拦访形式比较特殊,被访者是在行走过程中,问卷题目应该尽量短小简单。本次问卷题目一共26道题目,包括单选、多选以及复合题目,a4纸打印需要三张。在访问过程中,感觉有些繁琐冗长。被访者大多觉得题目较多,一张问卷访问下来,大约需要10分钟的时间。就日后的调研来看,个人认为,街头拦访问卷一般题目在10-20个问题,a4纸打印2张,访问时间控制在5-8分钟左右为宜。过长会导致被访者的厌烦情绪,在问卷的最后容易随便糊弄了事,影响调研的准确性。虽然调研中有这样和那样的困难,但经过全体项目人员的努力,本次调研项目执行到位,保质保量的完成了任务,达到预期要求。
4月份,与xx市场研究公司合作开展了“XX年第一期版面监测调研项目”。针对项目执行过程中的各个环节严格把关,务求使版面调研数据的真实准确。并在6月初召开了报告讲解会。本次报告在原有基础上增加了定性研究与版面的直观对比,对各部们领导解读报告起到一定的作用。
6月末,在集团要求下,和祁x一起完成了半年客户满意度调研报告,为经营工作考核提供了一定的数据依据。
在XX年初,发行调研已经全部由市场部独立进行,每月进行一周。虽然人员有限,但市场部人员尽出,保证了发行调研的按期进行。就发行调研本身来说,个人认为,由于选择摊点过少,每期报告不免单调重复,在XX年下半年应当改进调研方式,不再单纯进行要报销报的数量,要在原有基础上有计划的进行较为深入的调研。这样可以使得发行调研更加具有指导意义。
在上半年,市场部配合房产专刊部进行了“购房消费卷”活动,在活动结束之后,为领导撰写了《春暖花开购房消费卷报告》,报告以漫画等幽默的方式展示了华商晨报“购房消费卷活动”,并对其他媒体在房产行业方面的政策以及地产商投放广告心态进行了分析,得到了领导的认可。
另外,在5月末,在中心领导的指示下,深入研究了xx活动,在查阅了大量资料,并在部门主任的指导下,撰写了《xxxx》活动策划报告。通过此次报告的撰写,让我自己所从事的工作的认识更加深刻,了解到自己的工作思路要依据数据而不局限于数据。作为市场部的一员,我要更加鞭策自己,拓展自己的思路与眼界,放眼市场放眼全局。在5月,我有幸赴北京参加了“市场研究基础知识培训”。本次培训主要是数据基础分析与处理,在介绍了我们日常工作常用软件execl的同时,讲解了专业的数据统计软件spss的基础操作。这次学习机会对我来说相当珍贵,而这次培训也对我日后的工作有了很大的帮助,希望在接下来慧聪所举办的一系列培训中依然可以去学习参加,提高自己的分析水平,业务能力。
从事数据工作已经是第四个年头了,各类调研项目也开展了很多,如何在数据分析与调查研究中更加深造自己,将是我XX年下半年的工作重点。我想,下半年的工作中,除了进行各种调研项目意外,也要在撰写各种常规数据报告的同时适当的进行专一行业的深度分析研究。
如果说有10条数据,那么大不了每条去逐一检查,人为处理,如果有上百条数据,也可以考虑,如果数据上到千万级别,甚至过亿,那不是手工能解决的了,必须通过工具或者程序进行处理,尤其海量的数据中,什么情况都可能存在,例如,数据中某处格式出了问题,尤其在程序处理时,前面还能正常处理,突然到了某个地方问题出现了,程序终止了。
对海量的数据进行处理,除了好的方法,最重要的就是合理使用工具,合理分配系统资源。一般情况,如果处理的数据过TB级,小型机是要考虑的,普通的机子如果有好的方法可以考虑,不过也必须加大CPU和内存,就象面对着千军万马,光有勇气没有一兵一卒是很难取胜的。
这也是本文的写作目的所在,好的处理方法是一位工程师长期工作经验的积累,也是个人的经验的总结。没有通用的处理方法,但有通用的原理和规则。
下面我们来详细介绍一下处理海量数据的经验和技巧:
现在的数据库工具厂家比较多,对海量数据的处理对所使用的数据库工具要求比较高,一般使用Oracle或者DB2,微软公司最近发布的SQLServer2005性能也不错。另外在BI领域:数据库,数据仓库,多维数据库,数据挖掘等相关工具也要进行选择,象好的ETL工具和好的OLAP工具都十分必要,例如Informatic,Eassbase等。笔者在实际数据分析项目中,对每天6000万条的日志数据进行处理,使用SQLServer2000需要花费6小时,而使用SQLServer2005则只需要花费3小时。
处理数据离不开优秀的程序代码,尤其在进行复杂数据处理时,必须使用程序。好的程序代码对数据的处理至关重要,这不仅仅是数据处理准确度的问题,更是数据处理效率的问题。良好的程序代码应该包含好的算法,包含好的处理流程,包含好的效率,包含好的异常处理机制等。
对海量数据进行分区操作十分必要,例如针对按年份存取的数据,我们可以按年进行分区,不同的数据库有不同的分区方式,不过处理机制大体相同。例如SQLServer的数据库分区是将不同的数据存于不同的文件组下,而不同的文件组存于不同的磁盘分区下,这样将数据分散开,减小磁盘I/O,减小了系统负荷,而且还可以将日志,索引等放于不同的分区下。
对海量的数据处理,对大表建立索引是必行的,建立索引要考虑到具体情况,例如针对大表的分组、排序等字段,都要建立相应索引,一般还可以建立复合索引,对经常插入的表则建立索引时要小心,笔者在处理数据时,曾经在一个ETL流程中,当插入表时,首先删除索引,然后插入完毕,建立索引,并实施聚合操作,聚合完成后,再次插入前还是删除索引,所以索引要用到好的时机,索引的填充因子和聚集、非聚集索引都要考虑。
当数据量增加时,一般的处理工具都要考虑到缓存问题。缓存大小设置的好差也关系到数据处理的成败,例如,笔者在处理2亿条数据聚合操作时,缓存设置为100000条/Buffer,这对于这个级别的数据量是可行的。
如果系统资源有限,内存提示不足,则可以靠增加虚拟内存来解决。笔者在实际项目中曾经遇到针对18亿条的数据进行处理,内存为1GB,1个P42.4G的CPU,对这么大的数据量进行聚合操作是有问题的,提示内存不足,那么采用了加大虚拟内存的方法来解决,在6块磁盘分区上分别建立了6个4096M的磁盘分区,用于虚拟内存,这样虚拟的内存则增加为4096x6+1024=25600M,解决了数据处理中的内存不足问题。
海量数据处理难因为数据量大,那么解决海量数据处理难的问题其中一个技巧是减少数据量。可以对海量数据分批处理,然后处理后的数据再进行合并操作,这样逐个击破,有利于小数据量的处理,不至于面对大数据量带来的问题,不过这种方法也要因时因势进行,如果不允许拆分数据,还需要另想办法。不过一般的数据按天、按月、按年等存储的,都可以采用先分后合的方法,对数据进行分开处理。
数据量增加时,处理中要考虑提前汇总。这样做的目的是化整为零,大表变小表,分块处理完成后,再利用一定的规则进行合并,处理过程中的临时表的使用和中间结果的保存都非常重要,如果对于超海量的数据,大表处理不了,只能拆分为多个小表。如果处理过程中需要多步汇总操作,可按汇总步骤一步步来,不要一条语句完成,一口气吃掉一个胖子。
在对海量数据进行查询处理过程中,查询的SQL语句的性能对查询效率的影响是非常大的,编写高效优良的SQL脚本和存储过程是数据库工作人员的职责,也是检验数据库工作人员水平的一个标准,在对SQL语句的编写过程中,例如减少关联,少用或不用游标,设计好高效的数据库表结构等都十分必要。笔者在工作中试着对1亿行的数据使用游标,运行3个小时没有出结果,这是一定要改用程序处理了。
对一般的数据处理可以使用数据库,如果对复杂的数据处理,必须借助程序,那么在程序操作数据库和程序操作文本之间选择,是一定要选择程序操作文本的,原因为:程序操作文本速度快;对文本进行处理不容易出错;文本的存储不受限制等。例如一般的海量的网络日志都是文本格式或者csv格式(文本格式),对它进行处理牵扯到数据清洗,是要利用程序进行处理的,而不建议导入数据库再做清洗。
海量数据中存在着不一致性,极有可能出现某处的瑕疵。例如,同样的数据中的时间字段,有的可能为非标准的时间,出现的原因可能为应用程序的错误,系统的错误等,这是在进行数据处理时,必须制定强大的数据清洗规则和出错处理机制。
视图中的数据来源于基表,对海量数据的处理,可以将数据按一定的规则分散到各个基表中,查询或处理过程中可以基于视图进行,这样分散了磁盘I/O,正如10根绳子吊着一根柱子和一根吊着一根柱子的区别。
目前的计算机很多都是32位的,那么编写的程序对内存的需要便受限制,而很多的海量数据处理是必须大量消耗内存的,这便要求更好性能的机子,其中对位数的限制也十分重要。
海量数据处理过程中,除了对数据库,处理程序等要求比较高以外,对操作系统的要求也放到了重要的位置,一般是必须使用服务器的,而且对系统的安全性和稳定性等要求也比较高。尤其对操作系统自身的缓存机制,临时空间的处理等问题都需要综合考虑。
数据量加大是一定要考虑OLAP的,传统的报表可能5、6个小时出来结果,而基于Cube的查询可能只需要几分钟,因此处理海量数据的利器是OLAP多维分析,即建立数据仓库,建立多维数据集,基于多维数据集进行报表展现和数据挖掘等。
基于海量数据的数据挖掘正在逐步兴起,面对着超海量的数据,一般的挖掘软件或算法往往采用数据抽样的方式进行处理,这样的误差不会很高,大大提高了处理效率和处理的成功率。一般采样时要注意数据的完整性和,防止过大的偏差。笔者曾经对1亿2千万行的表数据进行采样,抽取出400万行,经测试软件测试处理的误差为千分之五,客户可以接受。
还有一些方法,需要在不同的情况和场合下运用,例如使用代理键等操作,这样的好处是加快了聚合时间,因为对数值型的聚合比对字符型的聚合快得多。类似的情况需要针对不同的需求进行处理。
海量数据是发展趋势,对数据分析和挖掘也越来越重要,从海量数据中提取有用信息重要而紧迫,这便要求处理要准确,精度要高,而且处理时间要短,得到有价值信息要快,所以,对海量数据的研究很有前途,也很值得进行广泛深入的研究。
【2022年数据员工作总结范文精选7篇】相关推荐文章:
数据分析员年终工作总结精选三篇
2022年安全培训员工作总结范文精选6篇
2022年医院报告员述职报告精选7篇
检测员工作总结范文模板大全 检测员工作总结范文5篇
2022年机械点检员工作总结精选3篇
Copyright 2015-2022 魔方网版权所有 联系邮箱:29 59 11 57 8@qq.com